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ABSTRACT

Two mathematical representations of noise due to atmospheric turbulence are

presented. These representations are derived and used in computer simulations of

the Bartlett Estimate implementation of beamforrnzng. Beamforming is an array

processing technique employing an array of acoustic sensors used to determine the

bearing of an acoustic source. Atmospheric wind conditions introduce noise into

the beamformer output. Consequently, the accuracy of the process is degraded and

the bearing of the acoustic source is falsely indicated or impossible to determine.

The two representations of noise presented here are intended to quantify the effects

of mean wind passing over the array of sensors and to correct for these effects. The

first noise model is an idealized case. The effect of the mean wind is incorporated as

a change in the propagation velocity of the acoustic wave. This yields an effective

phase shift applied to each term of the the spatial correlation matrix in the Bartlett

Estimate. The resultant error caused by this model can be corrected in closed form

in the beamforming algorithm. The second noise model acts to change the true

_..directionlof propagation at the beginning of the beamforming process. A closed

form correction for this model is not available. Efforts to derive effective means

to reduce the contributions of the noise have not been successfuh In either case,
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the maximum error introduced by the wind is a beam shift of approximately three

degrees. That is, the bearing of the acoustic source is indicated at a point a few

degrees from the true bearing location. These effects are not quite as pronounced

as those seen in experimental results. Sidelobes are false indications of acoustic

sources in the beamformer output away from the true bearing angle. The sidelobes

that are observed in experimental results are not caused by these noise models.

The effects of mean wind passing over the sensor array as modeled here do not

alter the beamformer output as significantly as expected..More research is required

to determine the cause of the sidelobe errors. Thougl_ smal]e/than expected, the

effects of mean wind are quantified. If the wind may be represented by the first

model, the effects of the wind may be eliminated. Correction for error caused by

the second model is not currently possibl.e:
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CHAPTER I

INTRODUCTION

Beamforming is a signal processingtechnique which usesan array of acoustic

sensorsto determine the bearing of an acoustic source. The outputs of the sensors

are summed with weights and time delays to form a beam. The time delays are

called ateering vector_ and their function is to sweep the beam through a range

of assumed bearing angles. When the assumed direction corresponds to the true

bearing angle, the magnitude of the beam is maximized. Beamforming is a passive

detection technique. Data are digitally sampled from the outputs of acoustic sensors

and then processed by computer. No energy is emitted as in active techniques such

as radar.

Technology employing the acoustic principles on which beamforming is based

was used as far back as World War I. These principles will be discussed in detail

in Chapter II. Such processes were first developed by the British and the French

to detect approaching bombers and zeppelins in the air and submarines in the

ocean. However, these methods did not have sufficient accuracy to localize targets

for aiming weapons. Towards the end of World War II, technology was developed

to use radar for determining the range and bearing of enemy craft. Since World

War II, most uses of passive detection techniques have been employed in water

for the purpose of tracking. There are also geophysical applications for gathering

information on seismic activity as discussed by Kleyn (1983). These applications

are well documented and much research has been done in these areas.
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Recently, interest has been renewed in the application of beamforming tech-

niques to the tracking of acoustic sources (particularly helicopters) in the atmo-

sphere. The advantage of beamforming is its passive nature. The acoustic sensor

array emits no energy aimed at the target that the target can detect. This is not

the case with the use of radar which emits a beam of electromagnetic energy and

records echoes as the beam bounces off" potential targets.

The accuracy of the beamforming process is degraded by noise in the signals

from the acoustic sensors. The major portion of the noise is introduced as

the acoustic waves pass through the medium. Variations in temperature and

velocity of the air or water cause the path and speed of the acoustic waves to

be varied. The result is increased uncertainty of the bearing angle of the target

source. False indications may also be present. Due to the widespread use of

beamforrrdng applications in the ocean, the problem of noise in water has been

addressed considerably and its characteristics are fairly well understood as discussed

by Burdic (1984). The nature of noise due to atmospheric turbulence and how noise

affects the beamforming process for the purpose of tracking in air has not received

much attention. These topics are the subject of this report.

The Bartlet_ E_timate is the beamforming implementation discussed in this

report. The Bartlett Estimate is but one beamforming aigorithm. There are other

high resolution techniques such as the Mazimum Likelihood Method first reported

by Capon (1969) and the Zinear Predictive EJtima£e presented by Johnson (1982).

These high resolution algorithms outperform the Bartlett Estimate in some cases.

For example, these techniques are much better at distinguishing between two

separate sources at close bearing angles where the Bartlett Estimate might identify

the two as only being one source. A major drawback of such high resolution methods
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is that a matrix inversion is required. In cases like tracking where averaging time

is short, the matrices to be inverted may be singular and the methods fail. The

Bartlett Estimate does not require matrix inversion and therefore can be applied to

tracking.

Beamforming methods typically assume that noise is ideal. That is, the noise is

assumed to be uncorrelated from sensor to sensor, spatially white and homogeneous.

Therefore, the effects of the noise can theoretically be eliminated by long time

averaging of the signal. Long time averaging is possible in cases where the source

motion is small over the averaging time. However, in the case of a rapidly moving

source or any case in which the averaging time is limited (e.g. tracking), the effects

of noise are not negligible and cannot be averaged out. If a suitable representation

of the noise due to atmospheric turbulence could be developed, it could then be

used to modify the original data containing the acoustic signal and noise to yield

a "cleaner" signal with which to carry out the beamforming process. Therefore,

the accuracy of the beamformer would be enhanced. This report presents two

such representations (models) for noise due to atmospheric turbulence. Computer

simulations are performed to quantify the effects of noise having the form of these

two models on the accuracy of the Bartlett Estimate beamformer. Both models

require knowledge of the local wind conditions (speed and direction). The first

model is idealized and a closed form solution is allowed. That is, the error induced

by the wind can be eliminated within the beamforming algorithm. The second

model is less idealized and a closed form solution is not available. Efforts to correct

this error were unsuccessful.
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CHAPTER II

THE THEORY OF BEAMFORMING

The primary objective of beamforming is to determine the bearing of an

acoustic source. An array of acoustic sensors is used to gather data on the acoustic

energy in the air. The sensors record the acoustic vibrations in the air. These

vibrations include contributions coming from the source at some unknown bearing

angle and contributions from noise present in the atmosphere. The output of each.

sensor is multiplied by a weight ai and given a time delay wi. The adjusted outputs

are then added to form the beam. Two assumptions are made:

1) The sound waves passing over the array are plane waves. This assumption

provides that the source is sufficiently far away that the curvature of the acoustic

wave is negligible over the sensor array.

2) The acoustic signal is only a function of time. No attenuation occurs over the

distance traveled between sensors. The signal that each sensor receives is identical

except for a phase shift (essentially a time delay) that arises from the different

distances that the wave must travel from sensor to sensor.

-Beamforming attempts to offset the phase shift (time delay) exactly at each

sensor. When this is achieved, all the weighted sensor outputs are in phase and

the magnitude of the beam is maximized. A beamformer is an example of a spatial

.filter. That is, acoustic energy arriving at bearing angles other than the true bearing

angle are attenuated. The Bartlett Estimate studied in this thesis is presented by

Nielsen (1989). The derivation of the Bartlett Estimate is presented next.

A target acoustic source is located at some unknown bearing angle 8. A unit



vector in the direction of the acoustic wavespropagating from the acoustic source is

ft. An array of .lI acoustic sensors is assembled and a coordinate system is defined.

Each sensor has position vector _ and a reference sensor is designated. See Figure 1.

.Note that the unit vector -5 is located by the bearing angle 0. Let the reference

sensor be sensor 1. The speed of sound in the air is c. The output at the ith sensor

is given by

zi(t) = s(t + + hi(t) (2.1)
C

where s is the acoustic signal from the source and n is noise in the sensor output.

The differential travel distance between sensor 1 and sensor i is _i • 5 and is shown

in Figure 2.

The time delay ri due to the differential travel distance is given by

ri - (2.2)
C

This is the time the plane wave takes to travel between sensor 1 to sensor i.

A bearing angle 00 is assumed and the unit vector pointing from this bearing

direction is fi0. The offsetting time delays rio are then calculated as

_i • fi0
rio = (2.3)

C

The assumed bearing angle is swept through a range of assumed bearing directions.

The sensor outputs are given the offsetting time delays, multiplied by weights

a_ and summed. This sum is called the "beam" or "beamformer." The beamformer

output is denoted by g(t) and is given by

M [ ri'tL _i'UO _i'_0 ]9(t) = + ) + n(t ) (2.4)
C C C

i=1



Y acoustic source

D

plane waves

\

X

reference sensor

- denotes acoustic sensor

Figure i. General array of acoustic sensors.



sensor I

Y

sensor i

X

Figure 2. - Illustration of differential travel distance between sensor i and sensor 1.
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When the assumed bearing angle corresponds to the true bearing angle, the

offsetting time delays exactly cancel the delays of Equation 2.2, all of the sensor

outputs are in phase and their sum is maximized. Assuming unity weights

(ai = 1.0) and letting rio denote the offsetting time delays at each sensor as

in Equation 2.3, the beamformer output is given as

M

g(t) = M,(t) + (2.5)
i=1

for the correct value of offsetting time delay rio.

A. Frequency Domain Analysis

Further insight into the function of beamforming is gained by transforming

these expressions into the frequency domain. The application of digital computers

to beamforming in the frequency domain allows the use of fast algorithms such as

the Fast Fourier Transform (FFT). Taking the Fourier Transform of Equation 2.4

yields the transform of the beamformer G(f, rio). G(f, ti0) is a function of frequency,

f, and assumed direction, u0, and is given by

'_--. {-j2rrf_i , fto } (2.6)G(f, fi0) = a_X,(f)exp c
i=1

where j is v/'L-1 " and Xi(f) is the Fourier Transform of the sensor output

Xi(f) = S(f)exp{j2rfri'fi} + Ni(f) (2.7)

Note that the offsetting time delays in Equation 2.4 are now represented by

multiplication of complex exponentials which yield phase shifts in the frequency

domain.
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G(f, rio) can be represented by a dot product of two vectors tO and 2" which

have components

exp_-j2"rf_i " fi° _ and 2i = -¥,(f)tbi =
1, )C

The terms wi are the steering vectors. Note that they include the assumed bearing

angle 00. Then the beamformer is

G(f,(to) = _* . 2 (2.8)

where + denotes the complex conjugate transpose.

The power of the beam is a function of the square of the magnitude of the

beam. With assumed direction u0 and at frequency f the power is given by

P(f, fi0) = E{IG(f, fio)l 2} (2.9a)

(2.9b)

= u3+/_u5 (2.9c)

where E{.} is the expectation "operator which yields the average _-alue of the

argument. /_ is the spatial correlation matriz. The knth element of the spatial

correlation matrix is given by

R_,_ = E{[S(f)exp{j2crf r_'u} +
C

IS (f)exp{-)2rrf_} +
C

(2.1o)

where " denotes the complex conjugate.

noise portions of the sensor outputs are

independent). Therefore, the average of cross terms involving noise terms multiplied

It is assumed that the signal and

completely uncorrelated (statistically
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by signal terms in Equation 2.10 are equal to zero. The spatial correlation matrix

can then be expressedas

=

Defining the spatial correlation matriz for noiae as

the beam output power is

E{.,'V_(I)N:(f)} (2.11)

P(f, fi0) = o',w_-"exp{j27rf (_ - ¢")'_}u3 - o'_-O_ (2.13)
C

The expression in Equation 2.13 is the Bartlett Estimate for the power of the

2 and 2beamformer output, o-_ o'_ are the intensities of the signal portion and the

a is equal to E(S(f)S'(f)}.noise portion of the sensor outputs respectively. _

2/0"_. Note that Q is normalized byThe signal-to-noise ratio, SNR, is given by %

2 The beamformer scans the range of assumed bearing angles for each frequencyO'r_.

component in the range of frequencies of interest. In practice, much computer

processing capability is required for the purpose of tracking since these ranges must

all be covered in a time period that is approximately one second.

2 2 fi and Q are unknown quantities. The SNR in- In Equation 2.13, o',, ¢z_,

practice is usually small (on the order of 0 dB). The relative strengths of the signal

and noise are important in determining the ability of a particular beamforming

algorithm to pick out the signal when it is embedded noise. O is the chief source

of uncertainty because its composition is unknown. Many idealized models have

been proposed to try to quantify the nature of O. The short averaging time

characteristic to tracking causes poor performance of these models when applied to

(2k,_ = E{n_(f)n',,(f)} (2.12)
o'_
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the beamforming process. One such model is briefly discussed in the next chapter

and three others are included in an appendix.

In experimental results, three primary effects on the beamformer performance

are observed to be caused by atmospheric conditions. These effects are as follows:

1) Beam Shift - The indicated source bearing angle is displaced from the true bearing

angle.

2) Beam Widening - The main peak in the beamformer output at the true bearing

angle is widened. This adds uncertainty to the actual location of the maxima in

beam power in practical implementation. The beam width is measured at the point

where the beamformer power magnitude is 50% of the maximum beam power.

3) Presence of Sidelobes - Sidelobes are maxima in the beamformer power output at

assumed bearing angles away from the true bearing angle. The sidelobes indicate

that there are acoustic sources at other bearing angles when in fact there are none.

The matrix O from Equation 2.13 contains the contribution of noise due

to turbulence in the atmosphere. This quantity is unknown. If a suitable

representation of 0 could be determined, it could be subtracted from the right

hand side of Equation 2.13 and a more accurate beamformer output would result.



CHAPTER III

APPLICATION OF BARTLETT ESTIMATE

BEAMFORMER TO CURRENT WORK
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A. Array Geometriesand Spatial Aliasing

The range of frequenciesover which a given geometry may be effectively used

in beamforrning is limited. The upper end of this range is limited by spatial

aliasing. For a linear array with equally spaced sensors, the critical upper limit

is the frequency whose wavelength ,\ is twice the sensor spacing d. When the

frequency is greater than this critical value, the actual direction of propagation fi

may be confused with other assumed values of propagation ti0. Aliasing causes

considerable sidetobes thereby indicating sources where there are in fact none. The

location(s) where spatial aliasing will cause false indications is uncertain. This is

related to array geometry, the sensor spacing, d, the frequency, f, and the true

bearing angle, 0. In practical applications, spatial aliasing is eliminated by low-pass

"" O "i Y i v

Figure 3.- Linear Sensor Array
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filtering. It is important to know the critical frequencyfor the given array geometry.

For the linear array with a sensorspacingof 1.8288m (6 ft), the upper frequency

limit is 94 Hz. Figure 4 gives an exampleof spatial aliasing. Beamformer outputs

for M = 10, d = 1.8288 m (6 ft), _ = 45 ° and pure signal (no noise) are given for

frequencies of 90 Hz and 140 Hz. The output for 140 I-Iz indicates a false source at

129 °. Spatial aliasing is a phenomenon characteristic to beamforming and occurs

given these conditions regardless of the noise model used or the array geometry.

However, it can be minimized by array geometry. For example, inner sensors of the

nested triangular array may be used to process higher frequencies than the outside

sensors.

The lower range of frequencies is limited in that, as the frequency decreases,

increases and becomes larger in comparison to the sensor spacing. The result is

a broadening of the peak in beam.former output at the true angle of propagation

and therefore the true angle of propagation becomes more uncertain. Figure 5 gives

examples of this characteristic. Beamformer simulations for 30, 45, and 90 Hz with

pure signal output for equal values of d, M and 6) are shown. At 90 Hz, the half

power point beam width is 15 degrees. At 45 Hz, it is 31 degrees. At 30 Hz, the

half power point beam width is 54 degrees. The lower frequency limit should be

set depending on the permissible beamwidth for a particular application. An upper

limit recommended by Gerhold (1990) is the frequency whose wavelength )_ = 4d.

Another consideration concerning the linear array configuration is symmetry.

The output of a beamformer using a linear array is symmetric about the axis of

the array line. That is, if the line connecting the sensors is the reference for zero

degrees, any source, at 10 ° for example, will have an identical and yet false indication

at -10 ° . This characteristic of the linear array is illustrated in Figure (3. In the
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ILLUSTRATION OF SYMMETRY FOR L)NEAR ARRAY ii

pure signM, d = 1.8288 m, M = I0, O = 45 °, f = 90 Hz ,)1
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Figure 6. Illustration of symmetry for the linear array of equally spaced acoustic
sensors. True source is at 45 ° . False indication shown at -45 ° .
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interest of space and clarity, most plots of beamformer output in this report will

have 0 ° to 180 ° as a range for the assumed bearing angle O0.

B. Description of Beamformer Simulations

A linear array with equally spaced sensors as in Figure 3 was modeled. The

sensor spacing d was 1.8288 m (6 ft). The half power point beam width is related

to the number of sensors M. This is illustrated in Figure 7.

For identical values of d, f and.0, beamformer simulations were performed for

values of M equal to 10, 15 and 20. For M = 10, the half power point beam width

is 15 degrees. For M = 15, it is 10 degrees. For M = 20 it is 9 degrees. Note that

as M is increased, the beam power increases as well. The number of sensors used

here in the main simulations was M = 10. The speed of sound, c, used was 344 m/s

(1128.0 ft/sec). This speed corresponds to a temperature of 2940 K (70 ° F) at sea

level. Discretized sine waves at a frequencies of 30, 45 and 90 Hz were generated and

taken as the signal input to the sensors. (Recall that the frequency domain analysis

of beamforming processes one frequency component at a time.) These frequency

values yield results that are representative of beamformer output over the useful
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range of frequencies for the 1.8288 m (6 ft) sensor spacing. This useful range is

the range of frequencies that the beamformer can be used to process. This useful

range is limited on the high end by spatial aliasing. The low end is limited by beam

widening. This range is related to the ratio of d/_. Since the array geometries are

typically fixed, the frequencies were varied while d was held constant to demonstrate

beamformer behavior as the ratio d/,_ changed. The upper aliasing limit where the

wavelength d = ),/2 for d = 1.8288 m (6 it) is 94 Hz.

It was assumed that the electronics introduce no noise into the sensor outputs.

That is, the sensor outputs were modeled as pure, discrete sinusoids. A 512-point

Fast Fourier Transform was taken of the signal outputs to transfer the data into the

frequency domain.

All plots included to illustrate results present the magnitude of the beamformer

power output on a linear scale. Typically, a decibel scale is used. However, a linear

scale better shows the characteristics that are to be pointed out as results in this

thesis.

Simulations were performed for different values of _ over the range of 0 ° to

180 ° for _0. Increments of one degree were taken. The frequency was 90 Hz. The

beam width is dependent on the value of 8. As 8 approaches the extremes of this

range, the beam becomes wider. See Figure 8.

This beam widening is symmetric about 90 °. For 6 = 0 °, the half power point

beamwidth is 50 degrees. For _ = 30 ° it is 23 degrees. For _ = 90 ° , it is 10

degrees. Recall that the beamformer output is symmetric about the line connecting

the sensors in the linear array. This line is at zero degrees. As the beam moves

toward zero degrees from the right, there is a corresponding beam moving toward

zero from the left and these two begin to join together as they approach zero degrees
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(or 180 degrees). This contributes to a very large half power point beam width near

the extremes.

C. Criteria Used to Judge Performance of Noise Models

The power output of the Bartlett Estimate beamformer and the effects of the

two proposed noise models on it are simulated in this report. Three criteria are

used in judging the performance of the noise models in comparison to beamformer

simulations with no noise included.

1 ) Shift in the location of the maximum beam power. This is the error in determining

the "exact" true bearing angle of the acoustic source. See Figure 9 for an

illustration of this shift.

2) Half power point beam width. This is the width in degrees of the peak in the

beamformer output around the indicated true bearing angle corresponding to a

power value of 50% of the peak power value. See Figure 10 for an illustration of

the half power point beam width.

3) Presence of sidelobes. The presence of sidelobes indicate that a particular model

causes false indications. That is, that the model would show that there are acoustic

sources at bearing angles where there are in fact none. See Figure 11 for an example

of sidelobes.
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CHAPTER IV

TWO REPRESENTATIONS OF NOISE DUE TO

ATMOSPHERIC TURBULENCE

This chapter will present the two actual noise models proposed in the current

work. The first is based on alteration of the speed of propagation and the second is

based on shifting the direction of the propagation vector. The first is idealized and

is correctable. The second is less idealized and efforts to correct it were unsuccessful.

A. Modification of Bartlett Estimate

A departure is taken from the Bartlett Estimate expression of Equation 2.13.

The spatial correlation matrix for noise, Q, is omitted and beam power is calculated

from pure signal

P(f, _o) = r2+/_s'2 (4.1)

/_s is an adjusted spatial correlation matrix containing only signal information and

no noise information. This is obtained from Equation 2.11. The knth element of

/}s is given by

Rs,k,, = S(f)S'(f)exp{j2_rf (_ - r_).fi} (4.2)
C

For the linear array, the dot product in Equation 4.2 is given by

(f_ - f,_)-ft = (k - n)dcos0 (4.3)

Rather than account for the presence of noise by using the matrix Q, the noise

is represented by an alteration of the phase shift information of/_s. How this is

accomplished for each of the two noise models will be discussed in detail later in
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this chapter. A wind speed of 13.4 m/s (44 fl/sec) was used. On flat land, this

is a realistic order of magnitude mean wind velocity for a short sustained gust as

presented by Stull (1988) and recommended by North (1990).

Each case of modeling the noise due to atmospheric turbulence is compared

to the calculation of beam power with no noise as given by Equation 4.1. This

allows the full effect of the wind to be isolated and observed.

B. Noise Model 1

The first noise model assumes that the wind alters the speed of propagation

of the acoustic waves. The direction of the propagation vector is assumed to be

unaffected. Doppler effects are also ignored. The projection of the wind velocity

onto the vector of the true propagation velocity adds to the speed of sound c

and effectively changes the speed at which the plane wave travels through the

atmosphere. The change in velocity alters the time delay which occurs as the

wave passes from one sensor to another. Recall from Equation 2.2 that the time

delay is dependent on the propagation velocity. Since the beamformer attempts to

negate these phase shifts based on the propagation speed in still air, an error will

be introduced. This error will result when the phase shifts represented in ]_s and

in the steering vectors u3i will be equivalent but the assumed angle of propagation

and the true angle of propagation will not be the same.

Recall the definition of the knth element of the spatial correlation matrix for

pure signal/_s

Rs,k,_ = S(f)S*(f)exp{j2_rf (_ - _,_).t2} (4.4)
C
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k unit vector pointing from the true bearing direction is a. The true bearing of

the acoustic source is 0. Now consider a wind blowing at constant velocity V in the

direction defined by a unit vector /5. The bearing angle of the direction that the

wind is coming from is 0w. See Figure 12. Unit vector -/5 points in this direction.

The wind acts to change the phase shift between two given sensors.

Consider the time delays between the kth and nth sensors. The extra distance

that the plane wave must travel after passing sensor n before sensor k receives it is

pk,_ given by

P krt =" (12

This distance is illustrated in Figure 13.

- k)dcos 0 (4.5)

The speed of sound in still air is c and

then the corresponding time delay r_,_ is pk,_/c.

= - k)dcos0 (4.0)

Now let the wind velocity component along t_ be added to c. The adjusted

speed of propagation is given by

c ,- V cos(0w - 0)

Figure 14 illustrates the vector operations that yield this result.

- The adjusted time delay which occurs now between the nth and kth sensors is

r_,_n and is given by

7,.a,kr t -.-

(n - k)dcosO

c + V cos(0w - 0)
(4.7)

The difference between time delays without wind and with wind (the difference

between Equation 4.6 and Equation 4.7) is rd,,_k and is given by

ra,k_, =(n - k)dcosO( 1 1 ) (4.8)c c + V cos(0w - 0)
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acoustic source

wind with velo_

Y -_

Figure 12. - Mean wind at velocity V coming from bearing angle Ow blowing over

a linear sensor array.
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Figure 13. - Illustration of the differential travel distance between the kth and nth

sensors of a linear array with sensor spacing d.
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(a)

C

(b)

0W

V cos(Ow

(c) [c + V cos(Ow - o)],_

(d)

Figure 14. Vector additions of wind and sound propagation vectors for Noise

Model 1. (a) Wind vector. (b) Sound propagation vector in still air. (c) Projection

of the wind vector in the direction of propagation vector shown in (b). (d) Resultant

adjusted propagation vector with unaffected direction but with adjusted magnitude.
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In the frequency domain, this time delay corresponds to a phaseshift ¢ which, in

radians, is 2rrf'rd,k,_..4.phaseshift is represented by a complex multiplication in the

frequency domain. This phase shift can be used to alter the phase characteristics

of the matrix/_s by multiplying the knth element of/_s by e ie_". This defines the

spatial correlation matrix for the first model,/_1. This phase shift is given by

ek,_ = 2rrf(n - k)dcosO( 1 1 )c c _- V cos(0w - 0)

The knth element of Rx is given by

(4.9)

/_l,k,, = /_s,k,_e :¢'*" (4.10)

Then the beam power taking into account the effect of mean wind as prescribed by

this model is

P(f, fzo) = _-/_1u3 (4.11)

Equation 4.9 shows that the maximum magnitude of error introduced by this

model would occur when the source was at art angle of 0 ° or 180 ° and the quantity

(0w - 0) was equal to r. The direction of beam shift would depend on whether 0 was

0 or 180 degrees. That is, the phase shift angle ¢_,_ from Equation 4.9 is maximized

for this set of conditions. The greatest change applied to the the velocity c occurs

then since the cos0 factor is equal to -+-1 and the factor 1/[c + Vcos(0w - 0)]

is maximized at 1/(c - V). Note that the cos 0 factor scales down the effect as 0

approaches :ka'/2 from either side. When 0 equals +r/2, ¢_,, equals zero and there

is no effect at all regardless of the magnitude of V because the cos 8 factor drives

the whole term to zero. This is so because the plane waves are reaching all of the

sensors at the same time (broadside). Also, there is no effect when _2 and i5 are

orthogonal because in this case, the projection of the wind velocity in the direction
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of 5, cos(Sw - 8), becomeszero. Figures 15 through 20 show representative

beamformer outputs for frequenciesof 30, 45 and 90 Hz with 8 equal to 30 ° and

60 °. The mean wind velocity V used was 13.4 m/s (44 ft/sec) and 8w was set equal

to 8 for each case.

C. Correction of Error Caused by Noise Model 1

The effect of noise of the form of that proposed by Model 1 may be corrected.

Since this effect is essentially a phase shift applied to the matrix /_s, (given in

Equation 4.10), the matrix R1 may be multiplied by another phase shift, synthesized

from available wind data, that negates the phase shift caused by the wind. Note

that eCe -¢' = 1.

Equation 4.9 defines the phase shift ¢_,_ applied to the knth element of the

matrix Rs. If the respective elements of/_i could be multiplied by a term e -j#_",

then the effects of the mean wind would be completely eliminated. The exact values

of ¢_,_ are not known however because Equation 4.9 requires knowledge of the true

beating angle 8. This is the quantity that is sought. Instead, the assumed bearing

angle 80 is used in place of 8 to give the correction phase shift 3'.

= 2zrf(n - k)dcosSo( 1 1 '_ (4.12)
\ c c + Vcos(Sw - 80) /

The knth element of the corrected spatial correlation matrix for the first noise model

/_1c is given by

/_lC,kn = fll,_e -j'w" (4.13)
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output including atmospheric effects modeled by Noise Model 1 for f = 90 DIz.and
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Figure 17. - Bartlett Estimate bearrfformer output comparing pure signal case with
output including atmospheric effects modeled by Noise Model 1 for .f = 48 Hz and
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The beam power for the correction is then given by

35

P(f,(to) = _+/_1c_2 (4.14)

At values of 00 near 0, the correction is virtually exact. See Figures 21 through

26 for representative results of these beamformer simulations for frequencies of 30,

45 and 90 Hz and for values of 0 equal to 30 ° and 60 °. The mean wind velocity

was 13.4 m/s (44 ft/sec) and Ow was set equal to O for each case. As these figures

show, the beam shift caused by mean wind as represented by Model 1 can be totally

eliminated.

D. Noise Model 2

The first proposed noise model assumed that the wind only affected the speed

of propagation of the acoustic waves and not the direction. The second model to

be shown now assumes that the wind only affects the direction of propagation and

not the speed. As with the previous model, consider a wind at constant velocity V

blowing over the array with bearing angle 0w. Refer back to Figure 12. Let the

wind vector and the true propagation vector add together to form a new propagation

vector U'2. The resultant z component is given by

U2_ = -ccosO- VcosOw (4.15)

and the resultant y component is given by

U2u = -csin0 - VsinSw (4.16)
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Figure 21. - Bartlett Estimate beamformer output comparing pure signal case with
output including atmospheric effects modeled by Noise Model 1 and the case of the

corrected Noise Model 1 for f = 90 Hz and # = 30 °.
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A unit vector in this direction is fi2 with bearing angle 02 given by

02 = tan-l(_i2Y_] -- _" (4.17)

The propagation speed is also changed. The new propagation speed is c2 and is

given by

The maximum error caused by this model occurs when t_ and ib are orthogonal

regardless of the value of 0.

This bearing angle is then used to calculate the adjusted spatial correlation

matrix/_2 for the noise represented by the second model. The knth element of/_2

is

R_,_,_ = S(f)S'(f)exp{j2nf (_k - _)" _) (4.19)
C2

The beam power for this beamformer simulation is

P(f, fio) = t0+/_2& (4.20)

Figures 27 through 32 give examples of output from the simulation of this noise

model for frequencies of 30, 45 and 90 blz and values of 0 of 30 ° and 60 °. The mean

wind velocity V was 13.4 m/s (44 ft/sec). In each case, 0w was set to 0 + 90 ° to

obtain orthogonality of the wind and propagation vectors.
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Figure 27. - Bartlett Estimate beamformer output comparing pure signal case with
output including atmospheric effects modeled by Noise Model 2 for f = 90 Hz and
e = 30 °.
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The first noise model was essentially a phase shift implemented by the multi-

plication of a complex exponential. Thus the error it induced was easily corrected.

The implementation of the second noise model is more mathematically complex.

The error caused by noise of this form is located in the bearing angle 02 locating

the unit vector -5_. In calculation of the beamformer, this angle is the argument of

a cosine term. The cosine term itself is in the argument of a complex exponential.

Since a linear array of equally spaced sensors is the subject of this analysis, the dot

product in the exponential of Equation 4.19 can be written as

(f_ - f,_).iL2 = (k - n)dcos02 (4.21)

02 is calculated from Equations 4.15 through 4.17. It is impossible to mathematically

isolate 02 in order to correct for it.

Efforts made to equate the effect of this representation of noise to an effective

phase shift were unsuccessful. If this were possible, the same approach to correction

as taken with the first model might yield favorable correction results. Another

approach considered to correct for this error was the alteration of the steering

vectors wi. Using the assumed bearing angle 00, it was possible to correct the

beam shift at the true angle of propagation. However, this approach worsened

the error in the "mirror image" of the beamformer output that exists due to the

symmetry discussed in Chapter III. This symmetry must be acknowledged when

using a linear array and the effects of such attempts at correcting for the error due

to the wind would make the handling of the symmetry more dit_cult. Figure 33

presents an attempt to use the steering vectors for correction. Note that at the true

propagation bearing 0 = 45 °, the corrected output and the pure signal output are

coincident. However at the symmetric location of 00 = -45 °, the uncorrected and

corrected curves are coincident. The error is not corrected at this point.
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A. Results of Application of Noise Models to

Bartlett Estimate Beamformer

Figure 34 shows the behavior of the half power point beam width for the cases

of pure signal, Noise Model 1, corrected Noise Model 1, and Noise Model 2. This

figure shows that Noise Model 1 and Noise Model 2 yield a smaller beamwidth than

the pure signal case and the corrected Model 1 case. For the set of parameters

used in Figure 34, the data points for the beamwidth for the pure signal case and

the corrected Noise Model 1 case are coincident. Also, the data points for Noise

Model 1 and Noise Model 2 are coincident. The result shown is that both Noise

Model 1 and Noise Model 2 have the same effect on the beam width for the same

conditions at a particular frequency.

Figures 35 and 36 show the error in true bearing angle (beam shift) for Noise

Model 1, corrected Noise Model 1, and Noise Model 2. The error due to Noise

Model 1 is generally greater than that caused by Noise Model 2. The correction

for Noise Model 1 eliminates all of the error caused by Noise Model 1 but the cost

of this correction is an increased half power point bandwidth as seen in Figure 34.

As all of the results show, neither of the noise models produce sidelobes. Also note

that the beam shift is independent of frequency.

Both noise models cause the beam to be more narrow and they both cause

some beam shift. Since Noise Model 1 has the cos0 factor as in Equation 4.9,

the error in true bearing location will depend on the value of 8 as well as the
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HALF POWER POINT BEAMWIDTH AS FUNCTION OF FREQUENCY
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Figure 34. Relation between the half power point beamwidth and the frequency,
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data points for Noise Model 1 and Noise Model 2 are coincident. The half power

point bandwidth for the pure signal case and the corrected Model 1 case are always
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wind speed and direction. Noise Model 2 only depends on the wind speed and

direction. Note in Figure 36 that, for 0 equal to 60 °, Noise Model 2 causes more

error. But, in Figure 35, Noise _Iodel 1 causes the greater error in true bearing

angle determination.

Figures 37 and 38 show the effect of wind velocity V on the magnitude of

the beam shift for Noise Models 1 and 2. In each case, the values of O, d, M,

0w and f are constant in each of the plots. These parameter values are not the

same for both of the plots. In each of these plots, the wind bearing angle 0w was

selected to give the greatest amount of beam shift for the value of 0 used. It is

clear that the error caused by each model increases with wind speed. The choice of

22.4 m/s (73.3 ft/sec) for V may seem high but it must be remembered that these

are instantaneous velocities which may be sustained only for a fraction of a second.

See Appendix B for discussion of atmospheric mean wind time scales.

Figures 39 and 40 show the effect of the true bearing angle 0 on the magnitude

of the beam shift over a range of 0. The values of M, d, f, V and 0w are constant

in each case (for each plot). Note that the maximum error for Noise Model 2 is seen

in the middle of this range. However, for Noise Model 1, the maximum error occurs

at the left end of the range for 0. This is so because the cos 0 factor in Equation 4.9

goes to zero as 0 approaches 7r/2.

" A maximum amount of beam shift for Noise Model 1 is shown in Figure 41.

For a wind speed V of 13.4 m/s (44 ft/sec) and a value of 0w selected to maximize

d_,_ from Equation 4.9, beam shifts of up to 10 degrees were obtained. This is

observed as 0 is near 0 or 180 degrees and the quantity (0w - 0) is near r. Note

that as 0 becomes near 30 °, the magnitude of the beam shift returns to the levels

shown in the previous chapter - about four degrees and less. The wind conditions in
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Figures 39 and 41 are not the same. As both figures show, the beam shift increases

as _ approaches zero degrees. It is not shown in Figure 39, but as Figure 41 shows,

as _ becomes less than about 20 °, the amount of beam shift levels off and reaches

a maximum magnitude of about 10 degrees. For wind speeds of up to 22.4 m/s

(73.3 ft/sec), beam shifts near 0 and 180 degrees of up to 20 degrees may be seen.

B. Conclusions Regarding Validity of

Current Work

Wind in the atmosphere degrades the performance of the Bartlett Estimate

beamformer when used for tracking applications where the time for data sampling

and processing is relatively short. This report has addressed one case of instanta-

neous atmospheric conditions. This case is a wind of constant velocity blowing over

an array of sensors in one direction.
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Two modelswereproposedto mathematically represent the effectof mean wind

on the Bartlett Estimate beamformer. Simulations were run and the effects were

quantified.

In the caseof Noise Model 1, it waspossible to correct, in closedform, for the

effect of the mean wind. This model is the more idealized one. If in fact the mean

wind may be representedby Model 1, the effect of the wind may be eliminated in

the Bartlett Estimate algorithm. This was demonstrated in Chapter IV.

For Noise Model 2, no closed form solution is available. The mathematics

the second model are more complex and an algebraic or trigonometric isolation of

the error in bearing angle is not possible. More work is necessary to determine if

perhaps an empirical correction for Noise Model 2 is possible.

In the case of both of the noise models presented here however, the effects of

the wind models are not as pronounced as expected. No obvious sidelobes were

produced and no widening of the half power point beam width was caused. The

only error caused by these models was a shift in the location of the maximum

in the beam power which indicates the true bearing angle. The beam shift was

generally four degrees and less. However, as was shown in Figure 41, beam shifts

of 10 degrees are possible with Noise Model 1. It has been proposed that these

beamforming techniques could be used to track targets 24.1 km (15 nil) away. A

four degree error in bearing equates to approximately a 1.69 km (1.05 mi) error in

location at a range of 24.1 km (15 mi). A beam shift of 10 degrees caused a 4.21 km

(2.6 mi) error in location of the source. Therefore, this error could be appreciable

depending on the conditions and the application.

The work done in this report has three important results.
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1) Thesemodels do causeone effect seenin actual results. This effect is the beam

shift. Previously proposedmodelsdo not explain any of the three detrimental effects

on the Bartlett Estimate beamformer. Thus, the present work is an improvement

over prior work in this subject area in that at least one cause of beam shift has been

identified.

2) If the mean wind blowing over the array may be represented by the models

derived and presented here, its effects have been quantified. And in the case of the

first model, the effects of the mean wind may be corrected. If the amount of beam

shift observed is deemed insignificant for the application, then effects of mean wind

may be ignored and would be assumed to not effect the Bartlett Estimate in any

crucial way.

3) Since these models do not cause any sidelobes or increase in the half power point

beamwidth as seen in actual experimental results, it must be concluded that the

mean wind does not cause these effects. These effects must be caused by some other

conditions in the atmosphere. There are many other instantaneous wind conditions

which have not been addressed here.

Some recommendations for continued work in this area are now made.

C. Recommendations

1) Conduct experimental verification studies in a controlled environment. The

experiments would demonstrate the correctness of the two models presented here;

experiments would also identify what atmospheric parameters need to be measured

in addition to the sound.
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2) Further literature search/experimental work is required to quantify the

instantaneous wind speed and direction descriptors in the lower atmosphere.

Address how to ascertain reasonable parameters for a wind gust and how to properly

model turbulent eddies over a sensor array.

3) Perform additional analytical studies (simulations) to determine the effects of

array geometry, frequency, sensor spacing and the number of sensors deployed.
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APPENDIX A

DIGITAL SIGNAL PROCESSING CONSIDERATIONS

The subject matter of this report is not concentrated on the practical imple-

mentation of beamforming. However, two points should be mentioned. The relative

magnitude of the beam power calculated is dependent on the number of FFT points,

N, taken in the data sampling. As the length of the sampled input sequence is in-

creased, more summations are carried out in the Fast Fourier Transform algorithm.

This increases the magnitudes of the Fourier terms S(f) in Equation 2.7.

The choice of digital sampling frequency, f,, and N determine the frequency

resolution of the beamformer. The frequency resolution is the "spacing" between

frequency components and is given by

f,
Af -- -- (A.1)

N

If the sampled sensor output has frequency components that are closer together than

A f, these components will not be represented as separate and distinct frequencies.

Instead, "smearing" will result and the contribution to the spectrum from the

in-between frequency components will be distributed among adjacent frequency

components as discussed by Strum and Kirk (1988). The magnitudes of the Fourier

Transforms of these components S(f) will be less than if the frequency component of

the sampled data did not fall between Fourier components. When the beamformer

calculates beam power for frequencies in a range where smearing has occurred, the

magnitude of the beam will be somewhat less than those for frequency components

which match exactly with frequencies in the sampled input sequence. Some digital

signet processing techniques must be applied to maintain the performance of the

beamformer. These techniques fall into the area of discrete spectrum analysis and
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are beyond the scope of this report. A knowledgeof the acoustic signature of the

target is helpful. Selecting N and fs such that a fine frequency resolution is obtained

over the range of interest aids in keeping a uniform beam power output. The

sampling frequency, fs, must also be chosen such that frequency aliasing is avoided.

f, must be at least twice the highest frequency in the sampled signal to avoid

frequency aliasing.

These issues were not addressed in the simulation done in this report. A value

of unity for Af was used in all cases and all frequencies tested were integer values.

These considerations are critical in practical application of the Discrete Fourier

Transform to beamforming.
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ATMOSPHERIC MEAN WIND TIME SCALE

Scales of time, length and velocity are commonly used in meteorology to

quantify a time, length or velocity characteristic to a particular situation. A time

scale is the length of time it generally takes for a certain action to occur as discussed

by Stull (1988). There are many derived meteorological time scales. Some are for

the stratification of the atmosphere. These time scales may be on the order of hours.

Other time scales are for the viscous dissipation of energy by eddies on the order of

one millimeter in size. Time scales such as these may be on the order of a fraction

of a second. In this report, atmosheric phenomena are addressed which have time

scales on the order of one second. The effect of mean wind on the performance of

the Bartlett Estimate is the subject of this thesis. The motion of a large air mass

is what causes the mean wind effects. According to Stull (1988), the time scale for

such an action is z/_f where x is the distance travelled and U is the mean velocity of

the air mass. Depending on the relative magnitudes of these _-alues, this time scale

may be on the order of one second to one minute. For the cases shown in this report,

z, the length of the array, is 16.5 m (54 ft) and C" is 13.4 m/s (44 ft/sec). The time

scale for this sensor arrangement is approximately 1.25 seconds. It is assumed then

that the wind conditions will remain constant over the array for 1.25 seconds. This

is greater than the 0.5 second sampling time over which data is recorded. Therefore,

the average of the data taken over the 0.5 second time window is assumed to be

representative of the instantaneous atmospheric conditions at that time.

For the case of a 22.4 m/s (73.3 ft/sec) wind as mentioned in Chapter V, this

assumption still holds true. The mean wind time scale for the same array with a

wind speed of 22.4 m/s (73.3 ft/sec) is about 0.75 second. While this length of
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time is not an order of magnitude greater than the 0.5 secondsampling time, it still

considered to be of sufficient length over which to obtain representative average

data.

These assumptions are required for the Bartlett Estimate to be simulated

as it was in this report. Atmospheric conditions are so unpredictable that such

assumptions are necessaryin almost any such study. The model presented in

Chapter III that assumedthe noiseto be spatially white and homogeneousis an

exampleof this necessity. In water, where that model is most often used,objects

move much slower and longer sampling ang averaging times can be had. In the

atmosphere, this is not the case. Therefore, these assumptions must be made to

apply the technology which is already known to new and different conditions.
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APPENDIX C

THREE MODELS FOR THE SPATIAL CORRELATION OF NOISE

This appendix presents three models that were obtained from Burdic (1984) and

essentially have been applied to three dimensional use in the ocean. The derivations

of these models are not provided here and may be obtained in Burdic's text. See

Figure 42 for illustrations of these models.

1) Isotropic Noise - The isotropic noise model assumes that acoustic energy

due to noise is distributed evenly over a sphere and uniformly over all frequencies

and bearing angles. The ijth element of Q for isotropic noise is given by

sin(47rdij/A)

qij(dij,,\,v) = (4rrdij/A) (C.1)

dij is the distance between the sensors, A is the wavelength corresponding to

frequency f, and r is the time delay incurred over the distance traveled (r = dij/c).

These definitions also hold for the next two models presented.

2) Semi-Isotropic Noise - The semi-isotropic noise model assumes that the

acoustic energy due to noise is un!forrnly distributed over a symmetric portion

of a sphere cut by an angle ¢0. The ijth element of (_ for this model is given as

q,j(d,j,A,r) = sinc{2d,j cos(¢o)/A}cos(2_rcr/A) (C.2)

For an array on the ground, a value of zero degrees is used for 60. The sine function

is defined such that sine(z) = [sin(z)]/z.

3) Impulsive Noise - The noise is considered uniformly isotropic over a region

everywhere in azimuth at an angle of elevation ¢0 and zero elsewhere.

element of the matrix (_ is given by

The ijth

qij(dij,A) = Jo[(27rdijcos(¢o))/,k] (C.3)
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Figure 42.

(c) Impulsive IN2I -_ _5(_ - _o)

Three noise models obtained from Burdic (1984).
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J0(*) denotesa first order Besselfunction of the first kind. k value of zero degrees

is used for o0 for an array on the ground.

For each of these three models, a simulation was run to examine the results

when applied to the Bartlett Estimate beamformer of Equation 2.13. The simula-

tions were done with a linear array of equally spaced sensors at a frequency of 90

Hz with .'_! = 10, d = 1.8288 m (6 ft), SNR = 1, and a true bearing angle 8 of 45 °.

The results of these simulations compared with beamformer output containing only

pure signal are given in Figures 43 through 45.

In each case, there are no sidelobes present to indicate false sources. There

are only extraneous levels of power output at assumed beating angles other than 8.

There is also no error in the indication of the correct bearing angle 8. Figure 43

shows noise modeled as being isotropic as in Case 1 above. FIere again the

extraneous output is about 17 dB below the maximum value of beam power.

Figure 44 shows the noise modeled as being semi-isotropic as described in Case 2

above. This model yields the greatest level of extraneous power output at 11 dB

below the peak value. Figure 45 shows noise modeled as impulsive as in Case 3

above. There is a 13 dB difference between the main peak and the extraneous power
i

output caused by this model. The magnitude of the beamformer power output away

from the true bearing angle 0 is not great enough to be considered detrimental to

the beamformer performance. The absence of sidelobes indicate that these models

do not cause the noise effects characteristic to actual beamforming results. Also,

the half power point beam width of the main peak is not affected. Thus, these three

models are inappropriate for tracking purposes.
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Figure 43. Bartlett Estimate beam.former power output for the case of pure

signal compared with case including noise modeled as being isotropic as described

by Burdic (1984).

800

700

a 600

I
ul

Q- 500

&

3

_ 5.00

_ 200

T Oa

0.00

PURE SIGNAL COMPARED WITH SEMI-ISOTROPIC NOISE

SNR = I. d = I.SZSS m, I_ = IO, /HETA = 45 DEGREES. f = 90 HZ

/

i

O

LEGEND

-- =URE ¢;ICNAL

--o SEMI-ISOTROP_C NOISE

p

20 40 60 80 1 O0 _ 20 14,0 160 _ 80

ASSUMED BEARING ANGI.J[ T_ETA_O - DEGREES

Figure 44. - Bartlett Estimate beamformer power output for the case of pure signal

compared with case including noise modeled as being semi-isotropic as described

by Burdic (1984).

ORIGINAL PAGE IS

OF POOR QUALITY



65

I

3
o
=!

PURE SIGNAL COMPARED WITH IMPULSIVE NOISE

SNR _ I. d = I.B2B8 r_, M = 10, THETA = 45 OEGREES. f = 90 NZ

700 - ,"

600 - _il
5.00 -

, oo - /'//

3,oo? ,,,/

200 -_ ..... //

_00 -L_'" "J

ooo _ _
0 20 40

ASSUMED 19_'ARING ANGUE T_ETA_0 - DEGREES

LEGENO

_URE SIGNAL

--- IMPULSIVE NOISE

L

' i" ...........
60 80 _00 _20 140 _60 _80

I
I

J

,]
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signal compared with case including noise modeled as being impulsive as described

by Burdic (1984).
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